253 research outputs found

    Water and Air Redistribution within a Dual Permeability Porous System Investigated Using Neutron Imaging

    Get PDF
    AbstractA ponded infiltration experiment was conducted under simultaneous imaging to investigate variations in quasi-saturated hydraulic conductivity a process frequently observed in infiltration experiments in soils with wide grain -size distribution. An artificially prepared heterogeneous sample composed of coarse quartz sand (representing pathways of preferential flow) and fine porous ceramic (representing soil matrix) was investigated. The sample was 34.5mm high and 29.0mm in diameter. Sequences of neutron radiography images (RI) of pixel size 0.045 × 0.045mm were taken at one angle during particular transient phases of the flow process. During quasi-steady state flow stages of the experiment radiography images were acquired in range of angles 0-180° in 0.9° step and. 3D neutron tomograms (TI) were then developed. Using the data a quantitative evaluation of the spatial and temporal distribution of water content within the sample was conducted. For every RI and TI the amount of water in particular pixels and voxels, respectively, was calculated by subtracting the image of dry sample. The accuracy of the water content estimates derived from the images was checked by comparing them to the corresponding gravimetrically determined water content data. Heavy water with equilibrium air saturation was introduced into the sample during two recurrent infiltrations. Thirty five hours later, during second infiltration, the inflow was switched to degassed heavy water in order to remove residual air present in the sample. During the first twelve hours of first infiltration run flow rate through the sample decreased from 3.7cm/hour to 1.0cm/hour at the end of the “steady state flow” stage. The flow rate in second run decreased from 3.6cm/hour to 1.6cm/hour. Comparison of the tomogram of the sample at the beginning and one taken at the end of the steady state flow stage in each run shows an increase of water content in the porous ceramic, while the water content in the coarse sand decreased. On the contrary, during the subsequent infiltration with degassed water the flow rate increased to its maximum value of 10.5cm/hour. The tomograms confirmed removal of the residual air during this stage. Increased water content in the coarse quartz sand was evident on a tomogram made at the end of the degassed water infiltration. The results show that the residual air saturation and its spatial distribution strongly affected the water flow in the quasi-saturated heterogeneous media representing natural soil

    Projector 2: contig mapping for efficient gap-closure of prokaryotic genome sequence assemblies

    Get PDF
    With genome sequencing efforts increasing exponentially, valuable information accumulates on genomic content of the various organisms sequenced. Projector 2 uses (un)finished genomic sequences of an organism as a template to infer linkage information for a genome sequence assembly of a related organism being sequenced. The remaining gaps between contigs for which no linkage information is present can subsequently be closed with direct PCR strategies. Compared with other implementations, Projector 2 has several distinctive features: a user-friendly web interface, automatic removal of repetitive elements (repeat-masking) and automated primer design for gap-closure purposes. Moreover, when using multiple fragments of a template genome, primers for multiplex PCR strategies can also be designed. Primer design takes into account that, in many cases, contig ends contain unreliable DNA sequences and repetitive sequences. Closing the remaining gaps in prokaryotic genome sequence assemblies is thereby made very efficient and virtually effortless. We demonstrate that the use of single or multiple fragments of a template genome (i.e. unfinished genome sequences) in combination with repeat-masking results in mapping success rates close to 100%. The web interface is freely accessible at

    SIMAGE: SImulation of DNA-MicroArray Gene Expression data

    Get PDF
    Background: Simulation of DNA-microarray data serves at least three purposes: (i) optimizing the design of an intended DNA microarray experiment, (ii) comparing existing pre-processing and processing methods for best analysis of a given DNA microarray experiment, (iii) educating students, lab-workers and other researchers by making them aware of the many factors influencing DNA microarray experiments. Results: Our model has multiple layers of factors influencing the experiment. The relative influence of such factors can differ significantly between labs, experiments within labs, etc. Therefore, we have added a module to roughly estimate their parameters from a given data set. This guarantees that our simulated data mimics real data as closely as possible. Conclusions: We introduce a model for the simulation of dual-dye cDNA-microarray data closely resembling real data and coin the model and its software implementation SIMAGE which stands for simulation of microarray gene expression data. The software is freely accessible at: http://bioinformatics.biol.rug.nl/websoftware/simag

    Transcriptional response of Lactococcus lactis during bacterial emulsification

    Get PDF
    Microbial surface properties are important for interactions with the environment in which cells reside. Surface properties of lactic acid bacteria significantly vary and some strains can form strong emulsions when mixed with a hydrocarbon. Lactococcus lactis NCDO712 forms oil-in-water emulsions upon mixing of a cell suspension with petroleum. In the emulsion the bacteria locate at the oil-water interphase which is consistent with Pickering stabilization. Cells of strain NCDO712 mixed with sunflower seed oil did not stabilize the oil droplets. This study shows that the addition of either ethanol or ammonium sulfate led to cell aggregation, which subsequently allowed stabilizing oil-in-water emulsions. From this, we conclude that bacterial cell aggregation is important for emulsion droplet stabilization. To determine how bacterial emulsification influences the microbial transcriptome RNAseq analysis was performed on lactococci taken from the oil-water interphase. In comparison to cells in suspension 72 genes were significantly differentially expressed with a more than 4-fold difference. The majority of these genes encode proteins involved in transport processes and the metabolism of amino acids, carbohydrates and ions. Especially the proportion of genes belonging to the CodY regulon was high. Our results also point out that in a complex environment such as food fermentations a heterogeneous response of microbes might be caused by microbe-matrix interactions. In addition, microdroplet technologies are increasingly used in research. The understanding of interactions between bacterial cells and oil-water interphases is of importance for conducting and interpreting such experiments

    BAGEL:a web-based bacteriocin genome mining tool

    Get PDF
    A common problem in the annotation of open reading frames (ORFs) is the identification of genes that are functionally similar but have limited or no sequence homology. This is particularly the case for bacteriocins, a very diverse group of antimicrobial peptides produced by bacteria and usually encoded by small, poorly conserved ORFs. ORFs surrounding bacteriocin genes are often biosynthetic genes. This information can be used to locate putative structural bacteriocin genes. Here, we describe BAGEL, a web server that identifies putative bacteriocin ORFs in a DNA sequence using novel, knowledge-based bacteriocin databases and motif databases. Many bacteriocins are encoded by small genes that are often omitted in the annotation process of bacterial genomes. Thus, we have implemented ORF detection using a number of published ORF prediction tools. In addition, BAGEL takes into account the genomic context, i.e. for each potential bacteriocin-encoding ORF, the sequence of the surrounding region on the genome is analyzed for genes that might encode proteins involved in biosynthesis, transport, regulation and/or immunity. These innovations make BAGEL unique in its ability to detect putative bacteriocin gene clusters in (new) bacterial genomes. BAGEL is freely accessible at:

    DISCLOSE : DISsection of CLusters Obtained by SEries of transcriptome data using functional annotations and putative transcription factor binding sites

    Get PDF
    Background: A typical step in the analysis of gene expression data is the determination of clusters of genes that exhibit similar expression patterns. Researchers are confronted with the seemingly arbitrary choice between numerous algorithms to perform cluster analysis. Results: We developed an exploratory application that benchmarks the results of clustering methods using functional annotations. In addition, a de novo DNA motif discovery algorithm is integrated in our program which identifies overrepresented DNA binding sites in the upstream DNA sequences of genes from the clusters that are indicative of sites of transcriptional control. The performance of our program was evaluated by comparing the original results of a time course experiment with the findings of our application. Conclusion: DISCLOSE assists researchers in the prokaryotic research community in systematically evaluating results of the application of a range of clustering algorithms to transcriptome data. Different performance measures allow to quickly and comprehensively determine the best suited clustering approach for a given dataset.

    The establishment and characterization of the first canine hepatocellular carcinoma cell line, which resembles human oncogenic expression patterns

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most worldwide frequent primary carcinomas resulting in the death of many cirrhotic patients. Unfortunately, the molecular mechanisms of this cancer are not well understood; therefore, we need a good model system to study HCC. The dog is recognized as a promising model for human medical research, namely compared with rodents. The objective of this study was to establish and characterize a spontaneous canine tumor cell line as a potential model for studies on HCC. RESULTS: Histomorphological, biochemical, molecular biological and quantitative assays were performed to characterize the canine HCC cell line that originated from a dog with a spontaneous liver tumor. Morphological investigations provided strong evidence for the hepatocytic and neoplastic nature of the cell line, while biochemical assays showed that they produced liver-specific enzymes. PCR analysis confirmed expression of ceruloplasmin, alpha-fetoprotein and serum albumin. Quantitative RT-PCR showed that the canine HCC cell line resembles human HCC based on the measurements of expression profiles of genes involved in cell proliferation and apoptosis. CONCLUSIONS: We have developed a novel, spontaneous tumor liver cell line of canine origin that has many characteristics of human HCC. Therefore, the canine HCC cell line might be an excellent model for comparative studies on the molecular pathogenesis of HCC
    • …
    corecore